Modelling the probability of occurrence in space

Much of the motivation for this course stems from the need to develop spatially explicit predictions about the likelihood that a species or event occurs in places we haven’t sampled. In ecology, we call these models by several different names: species distribution models, resource selection functions, habitat selection models. More generally we might call these ‘event occurrence models,’ statistical models that describe the relations between a number of predictors and the occurrence of any event of interest (e.g., presence of crimes, species, conservation actions, etc. )

Resources

Slides

View all slides in new window Download PDF of all slides

Guillera-Arroita, G., J. J. Lahoz-Monfort, J. Elith, A. Gordon, H. Kujala, P. E. Lentini, M. A. McCarthy, R. Tingley, and B. A. Wintle. 2015. Is my species distribution model fit for purpose? Matching data and models to applications. Glob. Ecol. Biogeogr. 24:276–292.

Guisan, A., R. Tingley, J. B. Baumgartner, I. Naujokaitis-Lewis, P. R. Sutcliffe, A. I. T. Tulloch, T. J. Regan, L. Brotons, E. McDonald-Madden, C. Mantyka-Pringle, T. G. Martin, J. R. Rhodes, R. Maggini, S. A. Setterfield, J. Elith, M. W. Schwartz, B. A. Wintle, O. Broennimann, M. Austin, S. Ferrier, M. R. Kearney, H. P. Possingham, and Y. M. Buckley. 2013. Predicting species distributions for conservation decisions. Ecol. Lett. 16:1424–1435.

MacKenzie, D. I., J. D. Nichols, G. B. Lachman, S. Droege, J. Andrew Royle, and C. A. Langtimm. 2002. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83:2248–2255.

Renner, I. W., J. Elith, A. Baddeley, W. Fithian, T. Hastie, S. J. Phillips, G. Popovic, and D. I. Warton. 2015. Point process models for presence‐only analysis. Methods Ecol. Evol. 6:366–379.

Stoltzfus, J. C. 2011. Logistic regression: A brief primer. Acad. Emerg. Med. 18:1099–1104.

Previous
Next